“From the standpoint of daily life, however, there is one thing we do know: that we are here for the sake of each other…Many times a day I realize how much my own outer and inner life is built upon the labours of my fellow men, both living and dead, and how earnestly I must exert myself in order to give in return as much as I have received.”
~Albert Einstein
In 2008, the Middle East was suffering the impact of almost ten years of devastating drought. The water line in the Sea of Galilee, Israel’s largest source of freshwater, plunged desperately close to the Black Line at which irreversible salt infiltration would contaminate the lake. Water restrictions resulted in the loss of a year’s crops for many Israeli farmers. In Syria, wells were drilled ever deeper, until they ran dry, and people were driven off the land into the slums expanding around Damascus, Aleppo, and Homs, aggravating the socio-political crises.
Less than a decade later, Scientific American could report that science had enabled Israel to achieve a freshwater surplus through conservation, reclamation, and desalination. The latter expedient provided the real breakthrough. One of the big problems with desalination has been microorganisms clogging the membrane pores through which the seawater is forced, necessitating an expensive chemical process to clear the blockages. Israel’s Zuckerberg Institute pioneered a chemical-free process with porous lava stone shielding the membranes from the microorganisms. Desalination now supplies 55 percent of Israel’s domestic water, providing a beacon of real hope in the troubled region, and a world anxious about freshwater reserves.
This story of enlightened aspiration and achievement seems to me to exemplify the meaning and purpose of leadership, reinforcing a long-held belief that science provides an insightful model for leaders. Many of the scientists I have worked with, some quite eminent, have played a significant part in inspiring this impression.
There were, however, some apparent contradictions to resolve. These related primarily to the understanding of the putatively related concepts of leadership and science. The leadership side of the equation seemed relatively straightforward, given my long-held commitment to the understanding of leadership as inspiring people to be the best they can be in working together for the good of all. The science side of the equation was inevitably more complicated.
And so I set myself the following conundrum to resolve: Is a snollygoster i.e. a person who possesses intellectual prowess but no sound moral principles, inherently incapable of being either a leader or a scientist? An affirmative answer would suggest that science is indeed an appropriate model for leadership. Of course, cynics will scoff at the idea of science as an ethical enterprise, but they are begging the question; the relationship between science and morality is precisely the issue to be decided.
The word science, in everyday usage, has at least four different meanings: it can mean the intellectual enterprise that seeks a rational comprehension of the natural world; it can stand for the corpus of currently accepted substantive scientific knowledge; it can refer to the international community of scientists, with its ethos and socio-economic structures; and, finally, it can signify the efforts and achievements of applied science and technology. I want to focus on the first of those meanings.
Science is the rational investigation of natural reality through the rigorous application of the empirical method of observation, testing, replication, and verification. The purpose of science is accurate knowledge of objective reality, or in other words, truth. Although science is fallible, it is an astonishingly successful method of acquiring knowledge of the natural world, even if approximate and incomplete, and therefore falsifiable. As physicist/mathematician, Alan Sokal, points out, “well-tested theories in the mature sciences are supported in general by a powerful web of interlocking evidence coming from a variety of sources…the progress of science tends to link these theories into a unified framework.”
Physics is held up as the supreme example of modern science in action, employing the empiriometric method i.e. experiment and mathematical expression. Max Planck, the great theoretical physicist, put it in a nutshell: “An experiment is a question which science poses to Nature, and a measurement is the recording of Nature’s answer.” So scientific method abstracts quantitative reality, i.e. matter, from reality as a whole, limiting its scope of inquiry.
If we apply Aristotle’s Four Causes analysis to this definition, the results would be as follows:
The Formal Cause of science, in simple terms its meaning, would be the rational investigation of material reality by empiriometric method.
The Material Cause of science would be material reality i.e. matter, its potential, and the regularities or laws that govern it.
The Efficient Cause of science would be the scientists who apply the empiriometric method in their quest to understand and manipulate material reality.
The Final Cause of science, in simple terms its purpose, would be the progressive expansion of knowledge about material reality i.e. the truth about the world of matter.
Now it is the ongoing controversy concerning the Final Cause that impacts the argument about science as a model for leadership, but there are also conflicting views regarding the other three causes that should be mentioned in passing.
There is currently a heated debate over the proposal by some scientists that if a theory is sufficiently elegant and explanatory, there should be no need for it to be tested experimentally. This, of course, would be a violation of the original premise of the Scientific Revolution that defined scientific knowledge as empirical. Physicist Lee Smolin and philosopher Roberto Unger, co-authors of “The Singular Universe and The Reality of Time“, expressed their concerns about what some researchers openly refer to as a crisis in physics: “Science is corrupted when it abandons the discipline of empirical validation or dis-confirmation. It is also weakened when it mistakes its assumptions for facts and its ready-made philosophy for the way things are.”
Another ongoing dispute concerns the unscientific claim, swallowed by vast swathes of the general public, to the effect that science is the only source of real knowledge. Related to this self-refuting argument is the curiously widespread belief that matter constitutes the whole of reality. Skipping lightly over the fact that abstract concepts, numbers, and propositions are neither matter nor energy, the forthright views of leading physicists help expose the folly of these incoherent claims.
The esteemed physicist, George F. R. Ellis, who co-authored the classic text, The Large-Scale Structure of Space-Time, with Stephen Hawking, is critical of those who burden real science with unrealistic claims: “The belief that all of reality can be fully comprehended in terms of physics and the equations of physics is a fantasy. As pointed out so well by Eddington in his Gifford lectures, they are partial and incomplete representations of physical, biological, psychological, and social reality.”
Many physicists acknowledge that both matter and mind remain intractable mysteries and that they don’t even know what the connections between those mysteries might be. As Adam Frank, professor of astrophysics at the University of Rochester, explains: “…after more than a century of profound explorations into the subatomic world, our best theory for how matter behaves still tells us very little about what matter is. Materialists appeal to physics to explain the mind, but in modern physics, the particles that make up a brain remain, in many ways, as mysterious as consciousness itself.”
Nobel Laureate, Steven Weinberg, is candid about science’s limitations: “I’m not as sure as I once was about the future of quantum mechanics. It is a bad sign that those physicists today who are most comfortable with quantum mechanics do not agree with one another about what it all means.”
Stephen Hawking, in A Brief History of Time, also acknowledged the natural limits of science: “Even if there is only one possible unified theory, it is just a set of rules and equations. What is it that breathes fire into the equations and makes a universe for them to describe? The usual approach of science of constructing a mathematical model cannot answer the questions of why there should be a universe for the model to describe.”
When using large amounts of data to drive decisions and policy making, we use both rhetoric and models. Rhetoric to used give a strong sense of urgency towards a call to action. Models are facts (data) collected, integrated, and tested to drive the rhetoric.
Though many argue “science”, they are really using rhetoric where they cherry picked facts and data to support their rhetoric. When many argue “models” they are talking about the the facts and data without subjective bias or sense of urgency.
We need both rhetoric and models. The problem is that most people lean to one or the other. Only a select few integrate both.